
 
Further SRM v2.2 Proposed Changes 

SRM_v2.2_draft_L8 
 

Compiled by Alex Sim at LBNL 
 

Inclusive of SRM v2.2 draft 3 by  
Timur Perelmutov at FNAL 

 
With contributions from  

Jean-Philippe Baud and Maarten Litmaath at CERN 
and Arie Shoshani at LBNL 

 
 

May 11, 2006 
 
 
Abstract 
 
In regards to recent discussion with WLCG Data Management Coordination Group for 
the requirements of the LHC experiments of the Grid Storage Interfaces, we propose the 
changes to SRM v2.1.2 specification. 
This proposed SRM version 2.2 changes extend and update the current SRM v2.1.2 
specification.  When generally accepted, missing detailed behaviors and defaults will be 
worked out, and the final changes will be consolidated into the SRM specification to be a 
part of SRM v2.2 specification. 
 
 
Notes 

• Red highlighted texts indicate that those will be removed from the current v2.1.2 
specification. 

• Yellow highlighted texts indicate that those will be added to the current v2.1.2 
specification. 

 
 
Proposed V2.2 Changes 
 
enum      TSpaceType {Volatile, Durable, Permanent} 
 
enum       TRetentionPolicy { REPLICA , OUTPUT ,  CUSTODIAL } 

• Quality of Retention (Storage Class) is a kind of Quality of Service. It refers to 
the probability that the storage system lose a file. Numeric probabilities are self-
assigned. 

o Replica quality has the highest probablity of loss, but is appropriate for 
data that can be replace because other copies can be accessed in a timely 
fasion. 



o Output  quality is an intermediate level and refers to the data which can be 
replace by lenghty or effort-full processes. 

o Custodial quality provides low probability of loss. 
 
enum      TAccessLatency   { ONLINE,  NEARLINE } 

• Files may be Online, Nearline or Offline. These terms are used to describe how 
latency to access a file is improvable. Latency is improved by storage systems 
replicating a file such that its access latency is online.  

o The ONLINE cache of a storage system is the part of the storage system 
which provides file with online latencies. 

o For completeness, we also describe OFFLINE here. 
o ONLINE has the lowest latency possible. No further latency 

improvements are applied to online files. 
o NEARLINE file can have their latency improved to online latency 

automatically by staging the file to online cache. 
o OFFLINE files need a human to be involved to achieve online latency. 
o For the SRM we only keep ONLINE and NEARLINE.  

 
typedef struct {  
   TRetentionPolicy  retentionPolicy, 
   TAccessLatency          accessLatency 
  } TRetentionPolicyInfo 
 
enum      TAccessPattern   { TransferMode,  ProcessingMode } 

• TAccessPattern is will be passed as an input to the srmPrepareToGet function. It 
will make a hint to SRM how the Transfer URL produced by SRM is going to be 
used. This will not be provided to the srmPrepareToPut because the prepared 
TURL will always be used for file transfers by wring date into the TURL. If the 
parameter value is “ProcessingMode”, the system might expect that application 
will perform some processing of the partially read data, followed by more partial 
reads and a frequent use of the protocol specific “seek” operation. This will allow 
optimizations by allocating files on disks with small buffer sizes. If the value is 
“TransferMode” the file will be read at the highest speed allowed by the 
connection between the server and a client. 

• This may not be sufficient to cover different access patterns as an enumeration. 
The access pattern may change over time during the life time of files, too.  It 
would be good to have it as a literal strings that a community can “define”. 

 
typedef string  TTransferProtocolInfo 

• TTransferProtocolInfo is an additional information about the transfer protocol 
when Transfer URL is ready. 

• It may specify access speed, available number of parallelism, and other transfer 
protocol properties. 

• Recommended format would be pre-defined XML style such as <parallelism 
value=2/>, <access speed=40/> etc. 

 



 
typedef struct {TSURLInfo   fromSURLInfo,  
   TLifeTimeInSeconds  lifetime, // pin time 

TFileStorageType  preferredFileStorageType, 
TSpaceToken   targetSpaceToken, 
TDirOption   dirOption, 
TAccessPattern  accessPattern  

} TGetFileRequest 
 
Note: 

• TGetFileRequest includes TAccessPattern which may conflict with the online 
disk type of the target space associated with target space token if provided. In 
this case, TAccessPattern must be ignored. 

 
typedef struct {TSURLInfo   toSURLInfo, // local to SRM  
   TLifeTimeInSeconds  lifetime,          // pin time 
   TFileStorageType  preferredFileStorageType, 
   TRetentionPolicyInfo  targetRetentionPolicyInfo, 

TSpaceToken   targetSpaceToken,  
    TSizeInBytes     knownSizeOfThisFile 

} TPutFileRequest  
 
Note: 

• TPutFileRequest does not include TAccessPattern because the prepared 
TURL has to be for the file transfers, not for local access for analysis. 

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types 
must match exactly. Otherwise, the request must be rejected. From the client’s 
point of view, it would be better to use only one of these parameters. 

 
typedef struct {TSURLInfo   fromSURLInfo, 
   TSURLInfo   toSURLInfo,  
   TLifeTimeInSeconds  lifetime, // pin time 
   TFileStorageType  targetFileStorageType, 

TAccessPattern  targetAccessPattern  
   TRetentionPolicyInfo  targetRetentionPolicyInfo, 

TSpaceToken   targetSpaceToken,  
TOverwriteMode    overwriteMode, 
TDirOption   dirOption 

} TCopyFileRequest   
 

Note: 
• TCopyFileRequest includes TAccessPattern which may conflict with the 

online disk type of the target space associated with target space token, or 
target retention policy info, if provided. In this case, TAccessPattern must be 
ignored. 



• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types 
must match exactly. Otherwise, the request must be rejected. From the client’s 
point of view, it would be better to use only one of these parameters. 

 
typedef  struct {TSURL   fromSURLInfo,    
   TSizeInBytes   fileSize, 
   TReturnStatus   status, 
   TLifeTimeInSeconds  estimatedWaitTimeOnQueue, 

TLifeTimeInSeconds  estimatedProcessingTime, 
TTURL   transferURL 
TLifeTimeInSeconds  remainingPinTime, 
TSpaceToken   spaceToken, 
TTransferProtocolInfo            transferProtocolInfo 

} TGetRequestFileStatus  
 
typedef  struct { TSizeInBytes   fileSize, 
   TReturnStatus   status, 
   TLifeTimeInSeconds  estimatedWaitTimeOnQueue, 

TLifeTimeInSeconds  estimatedProcessingTime, 
TTURL   transferURL, 
TSURL   siteURL,  // for future reference 
TLifeTimeInSeconds  remainingPinTime 
TSpaceToken   targetSpaceToken, 

   TRetentionPolicyInfo  targetRetentionPolicyInfo, 
   TTransferProtocolInfo            transferProtocolInfo 

} TPutRequestFileStatus 
 
typedef  struct {TSURL   fromSURL,  
   TSURL   toSURL,     
   TSizeInBytes   fileSize, 
   TReturnStatus   status, 
   TLifeTimeInSeconds  estimatedWaitTimeOnQueue, 

TLifeTimeInSeconds  estimatedProcessingTime,  
TLifeTimeInSeconds  remainingPinTime 
TSpaceToken   targetSpaceToken, 

   TRetentionPolicyInfo  targetRetentionPolicyInfo, 
} TCopyRequestFileStatus 

 
typedef  struct {TSURL   fromSURLInfo,    
   TSizeInBytes   fileSize, 
   TReturnStatus   status, 
   TLifeTimeInSeconds  estimatedWaitTimeOnQueue, 

TLifeTimeInSeconds  estimatedProcessingTime, 
TLifeTimeInSeconds  remainingPinTime, 
TSpaceToken   spaceToken, 

} TBringOnlineRequestFileStatus  



 
typedef  struct {string     path,   // both dir and file 
   TReturnStatus   status,  
   TSizeInBytes    size,    // 0 if dir 
   TOwnerPermission  ownerPermission, 

TUserPermission[]  userPermission, 
TGroupPermission[]  groupPermission, 
TOtherPermission  otherPermission 

   TGMTTime    createdAtTime, 
   TGMTTime   lastModificationTime, 
   TUserID   owner, 
   TFileStorageType  fileStorageType, 
   TRetentionPolicyInfo  retentionPolicyInfo, 
   TFileType   type,  // Directory or File  
   TLifeTimeInSeconds  lifetimeAssigned, 
   TLifeTimeInSeconds   lifetimeLeft, // on the SURL 
   TCheckSumType  checkSumType, 
   TCheckSumValue  checkSumValue, 

TSURL   originalSURL,   // if path is a file 
TMetaDataPathDetail[]        subPath              // optional recursive 

} TMetaDataPathDetail 
 
 
typedef struct {TSpaceType    type, 
   TSpaceToken   spaceToken,  
   TRetentionPolicyInfo  retentionPolicyInfo, 

Boolean   isValid,  
TUserID   owner, 

   TSizeInBytes     totalSize,   // best effort 
TSizeInBytes   guaranteedSize,  

 TSizeInBytes   unusedSize, 
   TLifeTimeInSeconds  lifetimeAssigned, 
   TLifeTimeInSeconds   lifetimeLeft 

} TMetaDataSpace 
 
 
srmReserveSpace 
 In:  TUserID   authorizationID, 

TSpaceType   typeOfSpace,  
  TRetentionPolicyInfo  preferredRetentionPolicyInfo, 

String    userSpaceTokenDescription, 
TSizeInBytes   sizeOfTotalSpaceDesired,  
TSizeInBytes   sizeOfGuaranteedSpaceDesired, 
TLifeTimeInSeconds  lifetimeOfSpaceToReserve, 
Int []     expectedFileSize, 
TStorageSystemInfo  storageSystemInfo 



 
 Out: TRequestToken  requestToken 
  TLifeTimeInSeconds  estimatedProcessingTime, 

TSpaceType   typeOfReservedSpace,  
  TRetentionPolicyInfo  retentionPolicyInfo, 

TSizeInBytes   sizeOfTotalReservedSpace,  // best effort  
TSizeInBytes   sizeOfGuaranteedReservedSpace, 
TLifeTimeInSeconds  lifetimeOfReservedSpace,    
TSpaceToken,   referenceHandleOfReservedSpace, 
TReturnStatus   returnStatus 
 

    notes: 
• Asynchronous space reservation may be necessary for some SRMs to serve many 

concurrent requests. In such case, request token can be provided. If space 
reservation can be done immediately, request token must not be returned. 

• When asynchronous space reservation is necessary, the returned status code 
should be SRM_REQUEST_QUEUED or SRM_REQUEST_INPROGRESS. 

• estimateProcessingTime to complete the space reservation request is returned 
when known. 

• expectedFileSize is a hint that SRM server can use to reserve consecutive storage 
sizes for the request. At the time of space reservation, if space accounting is done 
only at the level of the total size,  this hint wouldn't do any good, and at the time 
of PrepareToPut, it matters. However, for some SRMs, those hints will make a 
contribution for a decition to allocate those blocks in some specific disks. 

• lifetimeOfSpaceToReserve is not needed if requesting permanent space.  
• SRM can provide default size and lifetime if not supplied. 
• storageSystemInfo is optional in case storage system requires additional security 

check. 
• If sizeOfTotalSpaceDesired is not specified, the SRM will return its default quota. 
• sizeOfTotalReservedSpace is in best effort bases. For guaranteed space size, 

sizeOfGuaranteedReservedSpace should be checked. These two numbers may 
match, depending on the storage systems. 

 
srmGetStatusOfReserveSpace 
 In:  TUserID   authorizationID, 
  TRequestToken  requestToken 

 
 Out: TLifeTimeInSeconds  estimatedProcessingTime, 
  TRetentionPolicyInfo  retentionPolicyInfo, 

TSizeInBytes   sizeOfTotalReservedSpace,  // best effort  
TSizeInBytes   sizeOfGuaranteedReservedSpace, 
TLifeTimeInSeconds  lifetimeOfReservedSpace,    
TSpaceToken,   referenceHandleOfReservedSpace, 
TReturnStatus   returnStatus 

 
    notes: 



• If the space reservation is not completed, estimateProcessingTime is returned 
when known. The returned status code in such case should be 
SRM_REQUEST_QUEUED or SRM_REQUEST_INPROGRESS 

• sizeOfTotalReservedSpace is in best effort bases. For guaranteed space size, 
sizeOfGuaranteedReservedSpace should be checked. These two numbers may 
match, depending on the storage systems. 

 
 
srmChangeFileStorageType 
 In: TUserID   authorizationID, 

TSURLInfo[]   arrayOfPath,   
  TFileStorageType  desiredStorageType, 

TSpaceToken   targetSpaceToken 
  TRetentionPolicyInfo  targetRetentionPolicyInfo 
 
 Out: TReturnStatus   returnStatus, 

TSURLReturnStatus[] arrayOfFileStatus 
    
notes: 

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters.  

• Applies to both dir and file 
• Either path must be supplied. 
• If a path is pointing to a directory, then the effect is recursive for all the files in 

this directory. 
• Space allocation and de-allocation maybe involved. 

 
srmChangeRetentionPolicy 
 In: TUserID   authorizationID, 

TSpaceToken   sourceSpaceToken 
  TRetentionPolicyInfo  sourceRetentionPolicyInfo 

TSpaceToken   targetSpaceToken 
  TRetentionPolicyInfo  targetRetentionPolicyInfo 
 
 Out: TReturnStatus   returnStatus, 

TSURLReturnStatus[] arrayOfFileStatus 
    
notes: 

• All files in the sourceSpaceToken will be moved to the targetSpaceToken. Or all 
files in the sourceRetentionPolicyInfo will be moved to the 
targetRetentionPolicyInfo. 

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters.  

• Space allocation and de-allocation maybe involved. 



 
 
srmRm 
 In: TUserID   authorizationID, 

TSURLInfo[]   arrayOfFilePaths    
TSpaceToken   spaceToken 

  TRetentionPolicyInfo  retentionPolicyInfo 
 
 Out: TReturnStatus   returnStatus,  

TSURLReturnStatus[] arrayOfFileStatus 
 

notes: 
• The need for those additional parameters is because we now need to know which 

copy of the file needs to be removed. This differentiates from srmRemoveFiles 
which requires requestToken from srmPrepareToGet or srmPrepareToPut..  

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters.  

• Applies to files 
• To distinguish from srmRmDir(), this function applies to files only. 

 
 
srmLs 
 In: TUserID   authorizationID, 

TSURLInfo[]   path, 
  TFileStorageType  fileStorageType, 

TSpaceToken   spaceToken 
  TRetentionPolicyInfo  retentionPolicyInfo, 
  boolean   fullDetailedList, 

boolean   allLevelRecursive, 
int    numOfLevels, 
int    offset, 
int    count 

 
 Out:  TMetaDataPathDetail[] details, 

TReturnStatus  returnStatus 
notes: 

• When spaceToken is provided, SRM returns all files that belong to the space 
associated with the space token. Same for retentionPolicyInfo. 

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters. 

• Applies to both dir and file 
• fullDetailedList=false by default. 

o For directories, only path is required to be returned. 
o For files, path and size are required to be returned. 



• If fullDetailedList=true, the full details are returned. 
o For directories, path and userPermission are required to be returned. 
o For files, path, size, userPermission, lastModificationTime, 

typeOfThisFile, and lifetimeLeft are required to be returned, similar to 
unix command ls –l. 

• If allLevelRecursive=true then file lists of all level below current will be provided 
as well. 

• If allLevelRecursive is "true" it dominates, i.e. ignore numOfLevels.  If 
allLevelRecursive is "false" or missing, then do numOfLevels.  If numOfLevels is 
"0" (zero) or missing, assume a single level.  If both allLevelRecursive and 
numOfLevels are missing, assume a single level. 

• When listing for a particular type specified by “fileStorageType”, only the files 
with that type will be in the output.  

• Empty directories will be returned. 
• We recommend width first in the listing. 
• We recommend that list of directories come before list of files in the return array 

(details).  
 
 
 
srmMv  
 In:  TUserID  authorizationID, 

TSURLInfo  fromPath, 
  TSURLInfo  toPath 
    

Out: TReturnStatus  returnStatus    
 

notes: 
• Now it may involve associated space and retention policy (storage class) changes 

internally. 
• Applies to both dir and file 
• Authorization checks need to be performed on both fromPath and toPath.  

 
srmBringOnline 
 In: TUserID   authorizationID, 

TGetFileRequest[]  arrayOfFileRequest,  
  string[]    arrayOfTransferProtocols,  
  string    userRequestDescription,  

TStorageSystemInfo  storageSystemInfo,  
  TLifeTimeInSeconds  totalRetryTime 

TSpaceToken   targetSpaceToken 
TAccessPattern  accessPattern 

 
 Out: TRequestToken  requestToken, 
  TReturnStatus   returnStatus,  
  string[]    supportedTransferProtocols,  



  TBringOnlineRequestFileStatus[] arrayOfFileStatus 
notes: 

• TAccessPattern may conflict with the online disk type of the target space 
associated with target space token, if both provided. In this case, TAccessPattern 
must be ignored. 

• When arrayOfTransferProtocols are submitted, SRM returns those transfer 
protocols that SRM supports among the user-submitted transfer protocols.   

• The userRequestDescription is a user designated name for the request.  It can be 
used in the getRequestID method to get back the system assigned request ID.   

• SRM  assigns the requestToken at this time. 
•  “retryTime” means: if all the file transfer for this request are complete, then try 

previously failed transfers for a total time period of “retryTime”. 
• In case that the retries fail, the return should include an explanation of why the 

retries failed. 
• This call is an asynchronous (non-blocking) call. To get subsequent status and 

results, separate calls should be made. 
 
srmStatusOfBringOnlineRequest 
 In: TRequestToken requestToken, 
  TUserID  authorizationID 
  TSURL[]  arrayOfFromSURLs, 
 
 Out: TReturnStatus   returnStatus,  

TBringOnlineRequestFileStatus[] arrayOfFileStatus 
notes: 

• If arrayOfFromSURLs is not provided, returns status for all files in this request. 
 
 
srmPrepareToGet 
 In: TUserID   authorizationID, 

TGetFileRequest[]  arrayOfFileRequest,  
  string[]    arrayOfTransferProtocols,  
  string    userRequestDescription,  

TStorageSystemInfo  storageSystemInfo,  
  TLifeTimeInSeconds  totalRetryTime 

TSpaceToken   targetSpaceToken 
TAccessPattern  accessPattern 
TTransferProtocolInfo            transferProtocolInfo 

 
 Out: TRequestToken  requestToken, 
  TReturnStatus   returnStatus,  
  TGetRequestFileStatus[] arrayOfFileStatus 
notes: 

• If TAccessPattern is provided at the request-level and file-level, then file-level 
TAccessPattern will take the priority and must be used.  



• If TSpaceToken is provided at the request-level and file-level, then file-level 
TSpaceToken will take the priority and must be used.  

• If TTransferProtocolInfo is provided at the request-level and file-level, then file-
level TTransferProtocolInfo will take the priority and must be used.  

• The userRequestDescription is a user designated name for the request.  It can be 
used in the getRequestID method to get back the system assigned request ID.   

• Only pull mode is supported for file transfers that client must pull the files from 
the TURL. 

• SRM  assigns the requestToken at this time for asynchronous status checking. 
• Normally this call will be followed by srmRelease(). 
• “retryTime” means: if all the file transfer for this request are complete, then try 

previously failed transfers for a total time period of “retryTime”. 
• In case that the retries fail, the return should include an explanation of why the 

retries failed. 
• This call is an asynchronous (non-blocking) call. To get subsequent status and 

results, separate calls should be made. 
• When the file is ready for the user, the file is implicitly pinned in the cache and 

lifetime will be enforced.  
• The invocation of srmReleaseFile() is expected for finished files later on. 

 
srmPrepareToPut 
 In: TUserID   authorizationID, 

TPutFileRequest[]  arrayOfFileRequest,  
  string[]    arrayOfTransferProtocols, 

string    userRequestDescription, 
  TOverwriteMode  overwriteOption, 
  TStorageSystemInfo  storageSystemInfo, 
  TLifeTimeInSeconds  totalRetryTime 
  TRetentionPolicyInfo  targetRetentionPolicyInfo 

TSpaceToken   targetSpaceToken 
TTransferProtocolInfo            transferProtocolInfo 

 
 Out: TRequestToken  requestToken, 
  TReturnStatus   returnStatus,  
  TPutRequestFileStatus[] arrayOfFileStatus 
notes: 

• If TSpaceToken is provided at the request-level and file-level, then file-level 
TSpaceToken will take the priority and must be used.  

• If TRetentionPolicyInfo is provided at the request-level and file-level, then file-
level TRetentionPolicyInfo will take the priority and must be used.  

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters. 

• If TTransferProtocolInfo is provided at the request-level and file-level, then file-
level TTransferProtocolInfo will take the priority and must be used.  



• Only push mode is supported for file transfers that client must push the file to the 
prepared TURL. 

• StFN (“toSURLInfo” in the TPutFileRequest) has to be local to SRM. If stFN is 
not specified, SRM will name it automatically and put it in the specified user 
space. This will be returned as part of the “Transfer URL”. 

• srmPutDone() is expected after each file is “put” into the allocated space. 
• The lifetime of the file starts as soon as SRM get the srmPutDone().  If 

srmPutDone() is not provided then the files in that space are subject to removal 
when the space lifetime expires. 

• “retryTime” is meaningful here only when the file destination is not a local disk, 
such as tape or MSS. 

• In case that the retries fail, the return should include an explanation of why the 
retries failed. 

 
 

  
srmCopy 
 In:  TUserID   authorizationID, 

TCopyFileRequest[]  arrayOfFileRequest,   
  string    userRequestDescription, 
  TOverwriteMode  overwriteOption, 
  Boolean   removeSourceFiles (default = false), 
  TStorageSystemInfo  storageSystemInfo, 
  TLifeTimeInSeconds  totalRetryTime 
  TRetentionPolicyInfo  targetRetentionPolicyInfo 

TSpaceToken   targetSpaceToken 
 
 Out: TRequestToken  requestToken, 
  TReturnStatus   returnStatus,  
  TCopyRequestFileStatus[]   arrayOfFileStatus 
notes: 

• If TSpaceToken is provided at the request-level and file-level, then file-level 
TSpaceToken will take the priority and must be used.  

• If TRetentionPolicyInfo is provided at the request-level and file-level, then file-
level TRetentionPolicyInfo will take the priority and must be used.  

• If TSpaceToken AND TRetentionPolicyInfo are provided, then their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters. 

• Pull mode: copy from remote location to SRM. (e.g. from remote to MSS.) 
• Push mode: copy from SRM to remote location. 
• Always release files from source after copy is done. 
• When removeSourceFiles=true, then SRM will  remove the source files on behalf 

of the caller after copy is done.  
• In pull mode, send srmRelease() to remote location when transfer is done. 



• If in push mode, then after transfer is done, notify the caller. User can then 
release the file. If user releases a file being copied to another location before it is 
done, then refuse to release. 

• Note there is no protocol negotiation with the client for this request. 
• “retryTime” means: if all the file transfer for this request are complete, then try 

previously failed transfers for a total time period of “retryTime”. 
• In case that the retries fail, the return should include an explanation of why the 

retires failed. 
• When both fromSURL and toSURL are local, perform local copy 
• Empty directories are copied as well. 

 
 
srmExtendFileLifeTimeInSpace 
 In: TSpaceToken   spaceToken, 
  TRetentionPolicyInfo  retentionPolicyInfo 
  TSURL   siteURL, 
  TUserID   authorizationID, 
  TLifeTimeInSeconds  newLifeTime  
 
 Out: TReturnStatus   returnStatus, 
  TLifeTimeInSeconds  newTimeExtended 
notes: 

• When spaceToken is provided, the lifetime of the file copy of the SURL in the 
space associated with the space token will be extended.  

• When retention policy info is provided, the lifetime of the file copy of the SURL  
associated with the retention policy info will be extended . 

• If retention policy info is provided AND spaceToken is provided, their types must 
match exactly. Otherwise, the request must be rejected. From the client’s point of 
view, it would be better to use only one of these parameters.  

• newLifeTime is relative to the calling time. Lifetime will be set from the calling 
time for the specified period. 

• The number of lifetime extensions maybe limited by SRM according to its policies. 
• If original lifetime is longer than the requested one, then the requested one will be 

assigned. 
• If newLifeTime is not specified, the SRM can use its default to assign the 

newLifeTime. 
 
 
enum   TStorageAttributes { SRM_FILE_STORAGE_TYPE, 

SRM_STORAGE_CAPACITY, 
SRM_USER_STORAGE_MAX, 
SRM_USER_STORAGE_MIN, 
SRM_USER_STORAGE_DEFAULT_LIFETIME, 
SRM_DEFAULT_FILE_LIFETIME, 
SRM_DEFAULT_FILE_STORAGE_TYPE, 
SRM_DEFAULT_TURL_EXPIRATION_TIME, 



SRM_ DEFAULT_ACCESS_LATENCY, 
SRM_ DEFAULT_ACCESS_PATTERN, 
SRM_ DEFAULT_RETENTION_POLICY, 
SRM_SUPPORTED_RETENTION_POLICY, 
SRM_SUPPORTED_ACCESS_PATTERN, 
SRM_SUPPORTED_ACCESS_LATENCY, 
SRM_DEFAULT_TRANSFER_PROTOCOL 
} 
 

Note: 
• This is to discover what features an SRM supports and what the default values 

for a specific features in SRM.  
• We can add more here. 

 
typedef  struct { 
   TStorageAttributes   storageAttr, 
   string    value, 
   string   valueType, 
   string   explanation 

} TStorageInfo 
 
Note:  

• value - value of the storageAttr. When SRM supports multiple values (e.g. when 
SRM supports multiple retention policies),  this value may contain more than one 
value separated by comma (,).  E.g. RELICA,CUSTODIAL 

• valueType - data type of the value for storageAttr in literal characters. For 
example,  int, long, string, boolean, TRetentionPolicy, etc. 

• explanation – this parameter explains what the value means to the SRM server. 
E.g. CUSTODIAL from TRetentionPolicy can be explained in the parameter that 
how the particular SRM treats this type if supported. 

 
srmGetSRMStorageInfo 
 In: TUserID   authorizationID, 
  EnumStorageAttributes  desiredAttributes[]  
 
 Out: TReturnStatus   returnStatus, 
  TStorageInfo   storageInfo[] 
notes: 

• srmGetSRMStorageInfo retrieves SRM storage information, such as storage 
capacity, client quota, default lifetime, etc.  

• When output parameter, TStorageInfo is returned to the client, storageAttr and its 
value are required to be returned. 

 
 
 
typedef  struct { 



   string transferProtocol, 
   string attributes 

} TTransferProtocols 
 
Note: 

• string transferProtocol (required) : Supported transfer protocol. For example, 
gsiftp, http 

• string attributes : Informational hints for the paired transfer protocol, such how 
many number of parallel streams can be used, desired buffer size, etc. 
Recommended to use the key/value pairs as a string list, separated by comma (,)  
(e.g. buffer_size=1000,parallel=4) or an XML form (e.g. <parallelism value=2/>, 
<access speed=40/>). 

 
srmGetTransferProtocols 
 In: TUserID   authorizationID, 
 
 Out: TReturnStatus   returnStatus, 
  TTransferProtocols  protocolInfo[] 
notes: 

• srmGetTransferProtocols() returns the supported file transfer protocols in the 
SRM with any additional information about the transfer protocol.  

 


